Strong Secrecy Capacity of a Class of Wiretap Networks
نویسندگان
چکیده
Abstract: This paper considers a special class of wiretap networks with a single source node and K sink nodes. The source message is encoded into a binary digital sequence of length N, divided into K subsequences, and sent to the K sink nodes respectively through noiseless channels. The legitimate receivers are able to obtain subsequences from arbitrary μ1 = Kα1 sink nodes. Meanwhile, there exist eavesdroppers who are able to observe subsequences from arbitrary μ2 = Kα2 sink nodes, where 0 ≤ α2 < α1 ≤ 1. The goal is to let the receivers be able to recover the source message with a vanishing decoding error probability, and keep the eavesdroppers ignorant about the source message. It is clear that the communication model is an extension of wiretap channel II. Secrecy capacity with respect to the strong secrecy criterion is established. In the proof of the direct part, a codebook is generated by a randomized scheme and partitioned by Csiszár’s almost independent coloring scheme. Unlike the linear network coding schemes, our coding scheme is working on the binary field and hence independent of the scale of the network.
منابع مشابه
Capacity-based random codes cannot achieve strong secrecy over symmetric wiretap channels
ABSTRACT In this paper, we investigate the limitations of capacity-based random code constructions for the wiretap channel, i.e., constructions that associate to each confidential message a subcode whose rate approaches the capacity of the eavesdropper’s channel. Generalizing a previous result for binary symmetric channels, we show that random capacity-based codes do not achieve the strong secr...
متن کاملMIMO Wiretap Channels with Arbitrarily Varying Eavesdropper Channel States
In this work, a class of information theoretic secrecy problems is addressed where the eavesdropper channel states are completely unknown to the legitimate parties. In particular, MIMO wiretap channel models are considered where the channel of the eavesdropper is arbitrarily varying over time. Assuming that the number of antennas of the eavesdropper is limited, the secrecy rate of the MIMO wire...
متن کاملCapacity results for classes of wiretap channels
We consider two communication systems which are time-discrete and memoryless, both depend on a state, in terms of information-theoretic secure data transmission. The compound channel consists of a finite or infinite set of channels which is known to both the sender and the receiver, but unfortunately it is not known which channel is in use for any codeword transmission. In contrast the state of...
متن کاملSecure Communications over Arbitrarily Varying
by Ebrahim MolavianJazi In this thesis, we consider a class of information protection problems requiring confidentiality (secrecy) from eavesdropping and integrity (reliability) from jamming in an information-theoretic context. For this purpose, we introduce the arbitrarily varying wire-tap channel (AVWTC) model consisting of a family of wiretap channels indexed by some state that is selected b...
متن کاملWiretap Channels with Causal State Information: Strong Secrecy
The coding problem for wiretap channels with causal channel state information available at the encoder and/or the decoder is studied under the strong secrecy criterion. This problem consists of two aspects: one is due to naive wiretap channel coding and the other is due to one-time pad cipher based on the secret key agreement between Alice and Bob using the channel state information. These two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 18 شماره
صفحات -
تاریخ انتشار 2016